首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18715篇
  免费   799篇
  国内免费   577篇
  2024年   19篇
  2023年   168篇
  2022年   233篇
  2021年   318篇
  2020年   377篇
  2019年   575篇
  2018年   592篇
  2017年   296篇
  2016年   418篇
  2015年   674篇
  2014年   1110篇
  2013年   1314篇
  2012年   690篇
  2011年   1121篇
  2010年   799篇
  2009年   965篇
  2008年   980篇
  2007年   1079篇
  2006年   976篇
  2005年   918篇
  2004年   787篇
  2003年   712篇
  2002年   600篇
  2001年   423篇
  2000年   379篇
  1999年   388篇
  1998年   387篇
  1997年   291篇
  1996年   275篇
  1995年   304篇
  1994年   260篇
  1993年   205篇
  1992年   178篇
  1991年   153篇
  1990年   137篇
  1989年   118篇
  1988年   100篇
  1987年   100篇
  1986年   54篇
  1985年   92篇
  1984年   137篇
  1983年   95篇
  1982年   86篇
  1981年   50篇
  1980年   45篇
  1979年   34篇
  1978年   18篇
  1977年   14篇
  1976年   12篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been found to cause increases in cellular levels of pp60src, a protein tyrosine kinase in hepatocytes from the rat and guinea pig, in the thymus of the mouse in vivo and in NIH-3T3 mouse fibroblast cell lines in vitro. Such cellular changes take place in vivo at early stages of TCDD poisoning (as early as one day after treatment in the case of mouse thymus) and at very low doses (single intraperitoneal injections of 1 μg/kg for guinea pigs, 25 μg/ kg for rats, and 30 μg/kg for mice). In addition such an effect of TCDD was observed only in a TCDD-responsive mouse strain but not in a nonresponsive strain. This effect of TCDD is a long-lasting one (eg, even 25 days after single dosing, the levels of pp60src in the hepatic membrane remained high). In vitro this effect was observed in a wild-type 3T3 cell line but was more pronounced in one of the transfected lines with a v-src gene, a virus-derived oncogene known to code for pp60src protein.  相似文献   
53.
Myelin basic protein, an 80-kilodalton (kDa) protein in rat oligodendrocytes, and an 80-kDa basic protein in neuroblastoma x neonatal Chinese hamster brain explant hybrids were phosphorylated extensively when the cells were treated with either phorbol esters (TPA) or diacylglycerols (e.g., oleyoyl-acetylglycerol). TPA-stimulated phosphorylation was inhibited by pre-incubation with 50 microM psychosine (galactosyl-sphingosine), confirming that it is mediated through the phospholipid-dependent protein kinase C (PK-C). Surprisingly, phosphorylation of these proteins was inhibited by incubation of cells with agents which result in activation of cyclic-AMP-dependent protein kinase (dibutyryl cyclic AMP or forskolin). In contrast, phosphorylation of other nonbasic proteins, for example, the oligodendrocyte-specific 2',3'-cyclic nucleotide phosphohydrolase, was stimulated under these conditions (Vartanian et al.: Proceedings of the National Academy of Sciences of the United States of America 85:939, 1988). The possible role of cyclic AMP in activating specific phosphatases or restricting the availability of diacylglycerol for PK-C activation is discussed.  相似文献   
54.
Insulin stimulated autophosphorylation of the beta-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (alpha-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that alpha-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of alpha-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the beta-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the beta-subunit was mainly (greater than 80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the beta-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.  相似文献   
55.
Low-angle laser-light scattering (LALLS) was employed to measure the absolute molecular weight of chicken liver NAD+ kinase (NADK). The weight-average molecular weight (Mw) was found to be 275 000 +/- 15 000. The corresponding value for the second virial coefficient was -1.65 X 10(-3) ml X mol X g2. The value for Mw is in close accord with estimates reported for pigeon liver (270 000) and C. utilis (260 000) NADK. If the active enzyme is a dimer, the weight difference between pigeon/chicken liver and rabbit liver (136 000) NADK would indicate that the latter enzyme is an active monomer unit.  相似文献   
56.
Abstract The cAMP-binding proteins of different yeasts were photoaffinity labeled using 8- N 3-[32P]cAMP, and the M r values of the labeled proteins estimated by SDS-polyacrylamide gel electrophoresis. The M r values of the cAMP-binding proteins may be grouped into two size classes: (A) M r of about 50 000 represented by Saccharomyces cerevisiae and S. uvarum , and (B) M r of about 60 000 represented by Kluyveromyces fragilis, K. lactis, K. marxianus, S. globosus and S. rouxii .  相似文献   
57.
Peptidomimetic analogs of the peptide RRASVA, known as the “minimal substrate” of the catalytic subunit of the cAMP-dependent protein kinase (PKA), were synthesized by consecutive replacement of natural amino acids by their aza-β3 analogs. The peptidomimetics were tested as PKA substrates and the kinetic parameters of the phosphorylation reaction were determined. It was found that the interaction of these peptidomimetics with the enzyme active center was sensitive to the location of the backbone modification, while the maximal rate of the reaction was practically not affected by the structure of substrates. The pattern of molecular recognition of peptidomimetics was in agreement with the results of structure modeling and also with the results of computational docking study of peptide and peptidomimetic substrates with the active center of PKA. It was concluded that the specificity determining factors which govern substrate recognition by the enzyme should be grouped along the phosphorylatable substrate, and such clustering might open new perspectives for pharmacophore design of peptides and peptide-like ligands.  相似文献   
58.
Several RNA-cleaving deoxyribozymes (DNAzymes) have been reported for efficient cleavage of purine-containing junctions, but none is able to efficiently cleave pyrimidine-pyrimidine (Pyr-Pyr) junctions. We hypothesize that a stronger Pyr-Pyr cleavage activity requires larger DNAzymes with complex structures that are difficult to isolate directly from a DNA library; one possible way to obtain such DNAzymes is to optimize DNA sequences with weak activities. To test this, we carried out an in vitro selection study to derive DNAzymes capable of cleaving an rC-T junction in a chimeric DNA/RNA substrate from DNA libraries constructed through chemical mutagenesis of five previous DNAzymes with a kobs of ∼ 0.001 min− 1 for the rC-T junction. After several rounds of selective amplification, DNAzyme descendants with a kobs of ∼ 0.1 min− 1 were obtained from a DNAzyme pool. The most efficient motif, denoted “CT10-3.29,” was found to have a catalytic core of ∼ 50 nt, larger than other known RNA-cleaving DNAzymes, and its secondary structure contains five short duplexes confined by a four-way junction. Several variants of CT10-3.29 exhibit a kobs of 0.3-1.4 min− 1 against the rC-T junction. CT10-3.29 also shows strong activity (kobs  > 0.1 min− 1) for rU-A and rU-T junctions, medium activity (> 0.01 min− 1) for rC-A and rA-T junctions, and weak activity (> 0.001 min− 1) for rA-A, rG-T, and rG-A junctions. Interestingly, a single-point mutation within the catalytic core of CT10-3.29 altered the pattern of junction specificity with a significantly decreased ability to cleave rC-T and rC-A junctions and a substantially increased ability to cleave rA-A, rA-T, rG-A, rG-T, rU-A, and rU-T junctions. This observation illustrates the intricacy and plasticity of this RNA-cleaving DNAzyme in dinucleotide junction selectivity. The current study shows that it is feasible to derive efficient DNAzymes for a difficult chemical task and reveals that DNAzymes require more complex structural solutions for such a task.  相似文献   
59.
The activities of Ca2+/calmodulin (CaM)-dependent, Ca2+/phospholipid-dependent, and cyclic AMP-dependent protein kinases (CaM-KII, PKC, and PKA, respectively) were determined in rat brains after global ischemia. Both CaM-KII and PKC activities were significantly depressed in both hippocampal and cerebral cortical regions of ischemic animals, whereas no change was detected in PKA activity. The loss of CaM-KII activity was more dramatic and more sustained than the loss of PKC activity and correlated with the duration of ischemia. These decreases in enzyme activity were found in both supernatant and pellet fractions from crude homogenates. When the supernatant and pellet were analyzed for the amount of CaM-KII 50-kDa protein, a significant decrease was detected in supernatant fractions that paralleled a gain in the amount of CaM-KII in the pellet. Thus, the loss of CaM-KII activity in the supernatant can be explained by translocation of the enzyme to the pellet. Whether inactivation of CaM-KII occurs during or after the enzyme translocates from the supernatant to the pellet is unknown. Our results indicate that loss in CaM-KII activity parallels neuronal damage associated with ischemia; down-regulation of CaM-KII activity coincided with translocation of the enzyme to the particulate fraction, and it is proposed that this may be, in fact, a mechanism for controlling excessive CaM-KII phosphorylation.  相似文献   
60.
Abstract : In the present study, the role of phosphoprotein phosphatase in the regulation of L-type Ca2+ channel currents in rat pinealocytes was investigated using the whole-cell version of the patch-clamp technique. The effects of three phosphatase inhibitors, calyculin A, tautomycin, and okadaic acid, were compared. Although all three inhibitors were effective in inhibiting the L-type Ca2+ channel current, calyculin A was more potent than either tautomycin or okadaic acid, suggesting the involvement of phosphoprotein phosphatase-1. To determine the kinase involved in the regulation of these channels, cells were pretreated with H7 (a nonspecific kinase inhibitor), H89 (a specific inhibitor of cyclic AMP-dependent kinase), KT5823 (a specific inhibitor of cyclic GMP-dependent kinase), or calphostin C (a specific inhibitor of protein kinase C). Pretreatment with either H7 or calphostin C decreased the inhibitory effect of calyculin A on the L-type Ca2+ channel current. In contrast, pretreatment with H89 or KT5823 had no effect on the inhibition caused by calyculin A. Based on these observations, we conclude that basal phosphatase activity, probably phosphoprotein phosphatase-1, plays an important role in the regulation of L-type Ca2+ channel currents in rat pinealocytes by counteracting protein kinase C-mediated phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号